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A Details on Building Affection

We build Affection by annotating images existing in the following five datasets: MS-COCO [CFL+15], Visual-
Genome [KZG+17], Flickr30k Entities [PWC+15], Emotional-Machines [KKKL18] and the images considered in the
work of Quanzeng et al. [QJHJ16]. Specifically, we begin by annotating with affective responses all images in the latter
two emotion-oriented works. We then proceed by using the images in Quanzeng et al. to find for each one of them its
three nearest-neighbors in the image collections of MS-COCO, Visual-Genome and Flickr30k Entities, respectively.
We include and annotate with affective responses the found neighbors, resulting in covering additionally 22,770 images
from MS-COCO, 13,202 from Flickr30k Entities, and 16,437 from Visual-Genome.

To implement the nearest neighbor search we use the 512D embedding space formed by the output weights of the
final convolutional layer of a ResNet-32 [HZRS15], pre-trained on ImageNet [DDS+09]. Before running the search
algorithm, we apply an average pooling to the 7×7 spatial dimensions of the ResNet layer (forming a 1×1×512
embedding vector per image).

Secondary details. For the Visual Genome, it is worth noting that we restrict the nearest-neighbor search on its 56,506
images (out of 108,077) that are not included in COCO [CFL+15], or Flickr30k Ent. [PWC+15], to potentially discover
a larger number of unique neighbors across the individual datasets. As a final step, upon aggregating all relevant images
from all corresponding (five) datasets, we use “fdups” [Lop22] to discover and remove possible duplicates among them.
For the final version of Affection, we remove 198 duplicates found in this manner.

B Analyzing Properties of Affection

In this Section, we briefly include some supplementary analysis, similar in spirit to the one presented in Section 3 of the
main paper [AOGT22].

First, we analyze how some of the key linguistic properties discussed in that main paper, are manifested in the annotations
collected for each of the five underlying image datasets used to build Affection. Namely, we report the average attained
scores (computed with the same methods described in the main paper) for the properties of concreteness, subjectivity
and use of sentimental language. As seen in Figure 1, the annotations collected based on grounding visual stimuli found
in the emotion-oriented datasets of Emotional-Machines [KKKL18] and of Quanzeng et al., result on average in only
slightly more abstract, subjective and sentimental affective explanations (language), compared to the subset of images
of the remaining datasets. In other words, it appears that w.r.t. these key characteristics of Affection’s annotations,
the images used across all underlying datasets do not result in any significant discrepancy among the responses they
evoked.

∗Corresponding author.

https://affective-explanations.org


Achlioptas et al. Affection

Figure 1: Measuring key properties of Affection across its underlying image datasets. Histograms comparing
Affection in each of its underlying image datasets along the axes of (a) Concreteness, (b) Subjectivity, and (c) Sentiment.

Second, for the above described propertied, we also compare Affection to ArtEmis [AOH+21] (Figure 2). As mentioned
in the main paper, Affection and ArtEmis are similar in terms of their average concreteness scores (average scores of
2.82 vs. 2.81), but Affection contains significantly more subjective and sentimental annotations (see histograms (b) and
(c) of Figure 2).

Figure 2: Comparing Affection to ArtEmis along the axes of (a) Concreteness, (b) Subjectivity, and (c) Sentiment.
The histograms presented here are analogous to those contrasting Affection to COCO in Figure 2 of the main paper.

C Fine-grained Emotion Classification from a Single Modality

As stated in Section 6 of the main paper, the auxiliary emotion classifiers trained with Affection fail gracefully, as in,
they primarily confuse fine-grained emotion classes of the same (positive or negative) sentiment. Here, we include
the actual confusion matrices for the ResNet101-based image-2-emotion classifier (Figure 4) and the LSTM-based
text-2-emotion classifier (Figure 3). We note that for the image-2-emotion classifier we use during training and inference
only images for which there is a strong majority among the annotators w.r.t. the emotions they indicated. Crucially,
as stated in the main paper, the underlying distribution of emotions when considering only such images is highly
imbalanced (see Figure 7).
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Figure 3: Confusion matrix for an LSTM-based text2emotion 9-way classifier trained and tested with Affection’s
explanations.

Figure 4: Confusion matrix for a ResNet-101 pretrained image2emotion 9-way classifier trained and tested with
Affection’s emotion labels. Only images and emotion labels for which there is a unique strong majority among the
dominant emotions indicated by the annotators are used in this experiment.

3



Achlioptas et al. Affection

D Neural Listeners and Speakers

Figure 8 displays the average test performance of an LSTM + ResNet-101 -based (contrastive) neural listener trained
from scratch with ArtEmis explanations. Despite, the fact that this listener uses Affection’s annotations for training,
it performs on average worse than the non-finetuned CLIP-based model [RKH+21] presented in the main paper.
Presumably, this fact, is due to it using simpler components for image and language encoding.

Figure 5 displays examples of some of our neural speakers’ characteristic (common) failure modes. The first problem
oftentimes faced by all of our speaker variants is their inability to recognize the underlying object classes of the depicted
objects in the grounding image. Thus, their generations might appear to ground their explanations on objects not
actually displayed, e.g., describe properties of a male human when only females are shown. This generic error appears
in numerous captioning systems and is not specific only to speakers trained with affective explanations. However,
this problem can be more severe in typical affective imagery since such images tend to have more subtle and abstract
semantics (e.g., pizza-like-looking wall clock, example (A)). A second but less frequently occurring problem that
is also faced by all speaking variants is that they can sometimes create non-sensible emotional assessments, e.g., a
human would find it strange to describe a bicycle as being calm (example (B)). Besides these generic problems, the
main idiosyncratic problem we observed with the emotion-grounded variant is that it can overfocus (compared to other
variants) on language concerning the underlying emotion while missing to ground key visual details. For instance, for
image (C), the default variant produces ‘I feel sad because the monkey looks like he is trapped in a cage’. Finally, the
pragmatic variant, unlike the emotion-grounded one, sometimes might try too hard to use specific visual details in its
explanations, creating errors like those seen for image (D) – for which the default variant produces ‘The zebras are
beautiful and I would love to see them in the wild’.

(Default speaker)

“the pizza looks so delicious and I


 would love to eat it”

(Default speaker)

“the bike is so calm and the 


trees are so beautiful”

(Emo-grounded speaker)

“this monkey looks sad and 


I feel sad for him”


(Pragmatic speaker)

“the two zebras in the water look 

like they are having a good time”


(A) (B) (C) (D)

*


Figure 5: Most common failure modes of our affective neural speakers. Left-most two examples show generic
problems that all neural variants might suffer from: e.g., misidentifying the underlying visual elements (example A) or
making non-sensible emotional judgments (example B). While the third example (C) is sensible, it highlights how an
emo-grounded variant can overfocus on the underlying emotion and miss crucial visual details (e.g., the fence). On the
contrary, the pragmatic variant (example D) can overcompensate by wrongly mentioning visual details (the default
neural speaker simply mentions the zebras in this example). For more details see Section D.

We note that during inference for all neural speaking variants and the results presented in the main paper, we use
beam-search with a beam size of 20 and a soft-max temperature for the layer predicting each generated token of 0.3.
For the pragmatic variants, the β parameter described in Section 4 controlling the influence of the internal (judging)
listener is set to 0.25.
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Figure 6: Sentiment classes per dataset. Using VADER’s [HG14] sentiment classifier to assign the utterances of the
shown datasets, in one of three classes. Affection’s utterances are on average consider the least neutral.
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Figure 7: Fraction of Affection images that have a unique strong majority w.r.t. the dominant emotions indicated
by Affections’ annotators, per each emotion class.
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Figure 8: Listening accuracy of an LSTM + ResNet-101 neural listener, trained with Affection captions. The
performance displayed is a function of the number of distractor images used at inference time and is the average resulting
from five random seeds, used when pairing the target with randomly selected distractor images. Random guessing
reflects performance when selecting the target uniformly at random. As expected, our neural listener fares significantly
better, than random guessing, and also decreases its performance when more distractor images are considered.

6



Achlioptas et al. Affection

Figure 9: User interface of emotional Turing test. Upon reading the instructions (top) and observing the underlying
image, each annotator had to select among the four options shown (bottom). In this example, the second utterance (B)
is made by a neural speaker, while an annotator of Affection created the first utterance (A).
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